
Week 6 - Wednesday

 What did we talk about last time?
 Exam 1!
 Before that:
 Strings

For a long time it puzzled me how something so expensive, so
leading edge, could be so useless. And then it occurred to me that
a computer is a stupid machine with the ability to do incredibly
smart things, while computer programmers are smart people with
the ability to do incredibly stupid things. They are, in short, a
perfect match.

Bill Bryson

 A pointer is a variable that holds an address
 Often this address is to another variable
 Sometimes it's to a piece of memory that is mapped to file I/O

or something else
 Important operations:
 Reference (&) gets the address of something
 Dereference (*) gets the contents of a pointer

 We typically want a pointer that points to a certain kind of
thing

 To declare a pointer to a particular type

 Example of a pointer with type int:

type * name;

int * pointer;

 Students sometimes get worried about where the asterisk goes
 Some (like me) prefer to put it up against the type:

 Some like to put it against the variable:

 It is possible to have it hanging in the middle:

 Remember, whitespace doesn't matter in C

char* reference;

char *reference;

char * reference;

 A fundamental operation is to find the address of a variable
 This is done with the reference operator (&)

 We usually can't predict what the address of something will be

int value = 5;
int* pointer;
pointer = &value; // pointer has value's address

 The reference operator doesn't let you do much
 You can get an address, but so what?
 Using the dereference operator, you can read and write the

contents of the address

int value = 5;
int* pointer;
pointer = &value;
printf("%d", *pointer); // prints 5
*pointer = 900; // value just changed!

 Java doesn't have pointers
 But it does have references
 Which are basically pointers that you can't do arithmetic on

 Like Java, pointers allow us to do aliasing
 Multiple names for the same thing

int wombat = 10;
int* pointer1;
int* pointer2;
pointer1 = &wombat;
pointer2 = pointer1;
*pointer1 = 7;
printf("%d %d %d", wombat, *pointer1, *pointer2);

 One of the most powerful (and most dangerous) qualities of
pointers in C is that you can take arbitrary offsets in memory

 When you add to (or subtract from) a pointer, it jumps the
number of bytes in memory of the size of the type it points to

int a = 10;
int b = 20;
int c = 30;
int* value = &b;
value++;
printf("%d", *value); // What does it print?

 An array is a pointer
 It is pre-allocated a fixed amount of memory to point to
 You can't make it point at something else

 For this reason, you can assign an array directly to a pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value;

value = numbers;
value = &numbers[0]; // Exactly equivalent

value = &numbers; // What about this?

 Well, no, they aren't
 But you can still use array subscript notation ([]) to read and

write the contents of offsets from an initial pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value = numbers;

printf("%d", value[3]); // Prints 11
printf("%d", *(value + 3)); // Prints 11
value[4] = 19; // Changes 13 to 19

 We can use a pointer to scan through a string

char s[] = "Hello World!"; // 13 chars

char* t = s;
do
{
printf("(%p): %c %3d 0x%X\n", t, *t,

(int)*t, (int)*t);
} while (*t++); // Why does this work?

 That it's an int pointer

char s[] = "Hello World!"; // 13 chars
int* bad = (int*)s; // Unwise...

do
{
printf("(%p): %12d 0x%08X\n", bad, *bad, *bad);

} while (*bad++);

 What if you don't know what you're going to point at?
 You can use a void*, which is an address to … something!
 You have to cast it to another kind of pointer to use it
 You can't do pointer arithmetic on it
 It's not useful very often

char s[] = "Hello World!";
void* address = s;
int* thingy = (int*)address;
printf("%d\n", *thingy);

 There are some tricks you can do by accessing memory with
pointers

 You can pass pointers to functions allowing you to change
variables from outside the function

 Next week we're going to start allocating memory
dynamically
 Arrays of arbitrary size
 Structs (sort of like classes without methods)

 We need pointers to point to this allocated memory

 In general, data is passed by value
 This means that a variable cannot be changed for the function

that calls it
 Usually, that's good, since we don't have to worry about

functions screwing up our data
 It's annoying if we need a function to return more than one

thing, though
 Passing a pointer is equivalent to passing the original data by

reference

 Let's imagine a function that can change the values of its
arguments

void swapIfOutOfOrder(int* a, int* b)
{
if (*a > *b)
{

int temp = *a;
*a = *b;
*b = temp;

}
}

 You have to pass the addresses (pointers) of the variables
directly

 With normal parameters, you can pass a variable or a literal
 However, you cannot pass a reference to a literal

int x = 5;
int y = 3;
swapIfOutOfOrder (&x, &y); // Will swap x and y

swapIfOutOfOrder (&5, &3); // Not allowed

 Before we get into command line arguments, remember the
definition of a string
 An array of char values
 Terminated with the null character

 Since we usually don't know how much memory is allocated
for a string (and since they are easier to manipulate than an
array), a string is often referred to as a char*

 Remember, the only real difference between a char* and a
char array is that you can't change where the char array is
pointing

 Did you ever wonder how you might write a program that
takes command line arguments?

 Consider the following, which all have command line
arguments:

ls –al
chmod a+x thing.exe
diff file1.txt file2.txt
gcc program.c -o output

 Command line arguments do not come from stdin
 You can't read them with getchar() or other input

functions
 They are passed directly into your program
 But how?!

 To get the command line values, use the following definition for main()

 Is that even allowed?
 Yes.

 You can name the parameters whatever you want, but argc and argv
are traditional
 argc is the number of arguments (argument count)
 argv are the actual arguments (argument values) as strings

int main(int argc, char** argv)
{

return 0;
}

 The following code prints out all the command line arguments in order on
separate lines

 Since argv is a char**, dereferencing once (using array brackets), gives
a char*, otherwise known as a string

int main(int argc, char* argv[])
{
for(int i = 0; i < argc; i++)

printf("%s\n", argv[i]);

return 0;
}

 Let's write a program that
 Expects exactly one command line flag
 If the flag is:
▪ -y Print "yak"
▪ -c Print "cormorant"
▪ -t Print "Tasmanian devil"

 For any other argument, we should print "Unknown animal"
 If there is not exactly one command line argument (after the

program name), print:
"Usage: program [-y | -c | -t]"

 More on pointers

 Work on Project 3
 Keep reading K&R Chapter 5

	COMP 2400
	Last time
	Questions?
	Project 3
	Quotes
	Pointers
	Pointers
	Declaration of a pointer
	Whitespace doesn't matter!
	Reference operator
	Dereference operator
	Aliasing
	Pointer arithmetic
	Arrays are pointers too
	Surprisingly, pointers are arrays too
	Don't try this at home
	Or what if we pretend...
	void pointers
	Why do we care about pointers?
	Functions that can change arguments
	Example
	How do you call such a function?
	Command Line Arguments
	Strings
	Command line arguments
	Getting command line arguments
	You have to change main()
	Example
	Command line example
	Upcoming
	Next time…
	Reminders

