
Week 6 - Wednesday



 What did we talk about last time?
 Exam 1!
 Before that:
 Strings







For a long time it puzzled me how something so expensive, so 
leading edge, could be so useless. And then it occurred to me that 
a computer is a stupid machine with the ability to do incredibly 
smart things, while computer programmers are smart people with 
the ability to do incredibly stupid things. They are, in short, a 
perfect match.

Bill Bryson





 A pointer is a variable that holds an address
 Often this address is to another variable
 Sometimes it's to a piece of memory that is mapped to file I/O 

or something else
 Important operations:
 Reference (&) gets the address of something
 Dereference (*) gets the contents of a pointer



 We typically want a pointer that points to a certain kind of 
thing

 To declare a pointer to a particular type

 Example of a pointer with type int:

type * name;

int * pointer;



 Students sometimes get worried about where the asterisk goes
 Some (like me) prefer to put it up against the type:

 Some like to put it against the variable:

 It is possible to have it hanging in the middle:

 Remember, whitespace doesn't matter in C

char* reference;

char *reference;

char * reference;



 A fundamental operation is to find the address of a variable
 This is done with the reference operator (&)

 We usually can't predict what the address of something will be

int value = 5;
int* pointer;
pointer = &value; // pointer has value's address



 The reference operator doesn't let you do much
 You can get an address, but so what?
 Using the dereference operator, you can read and write the 

contents of the address

int value = 5;
int* pointer;
pointer = &value;
printf("%d", *pointer); // prints 5
*pointer = 900; // value just changed!



 Java doesn't have pointers
 But it does have references
 Which are basically pointers that you can't do arithmetic on

 Like Java, pointers allow us to do aliasing
 Multiple names for the same thing

int wombat = 10;
int* pointer1;
int* pointer2;
pointer1 = &wombat;
pointer2 = pointer1;
*pointer1 = 7;
printf("%d %d %d", wombat, *pointer1, *pointer2);



 One of the most powerful (and most dangerous) qualities of 
pointers in C is that you can take arbitrary offsets in memory

 When you add to (or subtract from) a pointer, it jumps the 
number of bytes in memory  of the size of the type it points to

int a = 10;
int b = 20;
int c = 30;
int* value = &b;
value++;
printf("%d", *value); // What does it print?



 An array is a pointer
 It is pre-allocated a fixed amount of memory to point to
 You can't make it point at something else

 For this reason, you can assign an array directly to a pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value;

value = numbers;
value = &numbers[0]; // Exactly equivalent

value = &numbers; // What about this?



 Well, no, they aren't
 But you can still use array subscript notation ([]) to read and 

write the contents of offsets from an initial pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value = numbers;

printf("%d", value[3] );     // Prints 11
printf("%d", *(value + 3) ); // Prints 11
value[4] = 19; // Changes 13 to 19



 We can use a pointer to scan through a string

char s[] = "Hello World!"; // 13 chars

char* t = s;
do
{
printf("(%p): %c %3d 0x%X\n", t, *t,

(int)*t, (int)*t);
} while (*t++); // Why does this work?



 That it's an int pointer

char s[] = "Hello World!"; // 13 chars
int* bad = (int*)s; // Unwise...

do
{
printf("(%p): %12d 0x%08X\n", bad, *bad, *bad);

} while (*bad++);



 What if you don't know what you're going to point at?
 You can use a void*, which is an address to … something!
 You have to cast it to another kind of pointer to use it
 You can't do pointer arithmetic on it
 It's not useful very often

char s[] = "Hello World!";
void* address = s; 
int* thingy = (int*)address;
printf("%d\n", *thingy);



 There are some tricks you can do by accessing memory with 
pointers

 You can pass pointers to functions allowing you to change 
variables from outside the function

 Next week we're going to start allocating memory 
dynamically
 Arrays of arbitrary size
 Structs (sort of like classes without methods)

 We need pointers to point to this allocated memory



 In general, data is passed by value
 This means that a variable cannot be changed for the function 

that calls it
 Usually, that's good, since we don't have to worry about 

functions screwing up our data
 It's annoying if we need a function to return more than one 

thing, though
 Passing a pointer is equivalent to passing the original data by 

reference



 Let's imagine a function that can change the values of its 
arguments

void swapIfOutOfOrder(int* a, int* b)
{
if (*a > *b)
{

int temp = *a;
*a = *b;
*b = temp;

}
}



 You have to pass the addresses (pointers) of the variables 
directly

 With normal parameters, you can pass a variable or a literal
 However, you cannot pass a reference to a literal

int x = 5;
int y = 3;
swapIfOutOfOrder (&x, &y); // Will swap x and y

swapIfOutOfOrder (&5, &3); // Not allowed





 Before we get into command line arguments, remember the 
definition of a string
 An array of char values
 Terminated with the null character

 Since we usually don't know how much memory is allocated 
for a string (and since they are easier to manipulate than an 
array), a string is often referred to as a char*

 Remember, the only real difference between a char* and a 
char array is that you can't change where the char array is 
pointing



 Did you ever wonder how you might write a program that 
takes command line arguments?

 Consider the following, which all have command line 
arguments:

ls –al
chmod a+x thing.exe
diff file1.txt file2.txt
gcc program.c -o output



 Command line arguments do not come from stdin
 You can't read them with getchar() or other input 

functions
 They are passed directly into your program
 But how?!



 To get the command line values, use the following definition for main()

 Is that even allowed?
 Yes.

 You can name the parameters whatever you want, but argc and argv
are traditional
 argc is the number of arguments (argument count)
 argv are the actual arguments (argument values) as strings

int main(int argc, char** argv)
{

return 0;
}



 The following code prints out all the command line arguments in order on 
separate lines

 Since argv is a char**, dereferencing once (using array brackets), gives 
a char*, otherwise known as a string

int main(int argc, char* argv[])
{
for(int i = 0; i < argc; i++ )

printf("%s\n", argv[i]);

return 0;
}



 Let's write a program that
 Expects exactly one command line flag
 If the flag is:
▪ -y Print "yak"
▪ -c Print "cormorant"
▪ -t Print "Tasmanian devil"

 For any other argument, we should print "Unknown animal"
 If there is not exactly one command line argument (after the 

program name), print:
"Usage: program [-y | -c | -t ]"





 More on pointers



 Work on Project 3
 Keep reading K&R Chapter 5
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